\(\int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [566]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 103 \[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=-\frac {2 (A b+a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 (3 a A+b B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

-2*(A*b+B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*(3*A*
a+B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*b*B*sin(d*x
+c)/d/cos(d*x+c)^(3/2)+2*(A*b+B*a)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.226, Rules used = {3033, 3047, 3100, 2827, 2716, 2719, 2720} \[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 (3 a A+b B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}-\frac {2 (a B+A b) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 (a B+A b) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[((a + b*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

(-2*(A*b + a*B)*EllipticE[(c + d*x)/2, 2])/d + (2*(3*a*A + b*B)*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*b*B*Sin[
c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (2*(A*b + a*B)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]])

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3033

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(b+a \cos (c+d x)) (B+A \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \int \frac {b B+(A b+a B) \cos (c+d x)+a A \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx \\ & = \frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2}{3} \int \frac {\frac {3}{2} (A b+a B)+\frac {1}{2} (3 a A+b B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+(A b+a B) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx+\frac {1}{3} (3 a A+b B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 (3 a A+b B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+(-A b-a B) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 (A b+a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 (3 a A+b B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 b B \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+a B) \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.89 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.04 \[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 \left (-3 (A b+a B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+(3 a A+b B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+3 A b \sin (c+d x)+3 a B \sin (c+d x)+b B \tan (c+d x)\right )}{3 d \sqrt {\cos (c+d x)}} \]

[In]

Integrate[((a + b*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

(2*(-3*(A*b + a*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + (3*a*A + b*B)*Sqrt[Cos[c + d*x]]*EllipticF[(
c + d*x)/2, 2] + 3*A*b*Sin[c + d*x] + 3*a*B*Sin[c + d*x] + b*B*Tan[c + d*x]))/(3*d*Sqrt[Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(400\) vs. \(2(147)=294\).

Time = 14.94 (sec) , antiderivative size = 401, normalized size of antiderivative = 3.89

method result size
default \(-\frac {\sqrt {-\left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\frac {2 a A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}+2 B b \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}{6 \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}}\right )+\frac {2 \left (A b +B a \right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(401\)

[In]

int((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*a*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x
+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+
2*B*b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)
^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2
*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+2*(A*b+B*a)/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1
)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-(sin(1/2*d*x
+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)))/sin(1/2*d*x+1/2*c)/(
2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 213, normalized size of antiderivative = 2.07 \[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {\sqrt {2} {\left (-3 i \, A a - i \, B b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (3 i \, A a + i \, B b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (i \, B a + i \, A b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-i \, B a - i \, A b\right )} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (B b + 3 \, {\left (B a + A b\right )} \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )^{2}} \]

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/3*(sqrt(2)*(-3*I*A*a - I*B*b)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + sqr
t(2)*(3*I*A*a + I*B*b)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(I
*B*a + I*A*b)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)))
 - 3*sqrt(2)*(-I*B*a - I*A*b)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) -
I*sin(d*x + c))) + 2*(B*b + 3*(B*a + A*b)*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)

Sympy [F]

\[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))/sqrt(cos(c + d*x)), x)

Maxima [F]

\[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

Giac [F]

\[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a+b*sec(d*x+c))*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

Mupad [B] (verification not implemented)

Time = 16.46 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.46 \[ \int \frac {(a+b \sec (c+d x)) (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {2\,A\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}}+\frac {2\,B\,b\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{3\,d\,{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x)))/cos(c + d*x)^(1/2),x)

[Out]

(2*A*a*ellipticF(c/2 + (d*x)/2, 2))/d + (2*A*b*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*co
s(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*B*a*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d
*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2)) + (2*B*b*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2))
/(3*d*cos(c + d*x)^(3/2)*(sin(c + d*x)^2)^(1/2))